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Abstract

Molecular dynamics simulations in the NVT ensemble were performed for a repulsive system of bead-spring polymer chains with angle

constraints. The diffusion coefficients of spherical penetrants were measured for different size penetrants as the angle constraints were varied.

The scaling of the diffusion coefficient with penetrant size varies as a function of chain stiffness from liquid-like behavior to polymeric

behavior. Free volume distributions were calculated from both simulation and PRISM theory. It is found that free volume distributions and

mean void size are constant with chain stiffness although the diffusion coefficient changes by a factor of two. This suggests that while free

volume is necessary for diffusion to occur, binary collisions and chain relaxation also play a role in determining penetrant diffusion. The

relative contributions of these factors to the diffusion coefficient may change as a function of chain stiffness.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Penetrant; PRISM theory; Stokes–Einstein relation

1. Introduction

Correlating dynamic properties with molecular structure

is an active area of research. Certainly, few people would

argue that structure should affect dynamic quantities such as

viscosity, diffusion, and the glass transition temperature.

Whether dynamic properties can be entirely predicted from

knowledge of the underlying structure and thermodynamics

is still unknown. In this work, we consider the effect of

chain stiffness, penetrant diameter and free volume

distribution on the diffusion of small molecule penetrants

in polymers.

Simple models are capable of capturing much of the

pertinent physics. A well-studied simple polymer model is

the semi-flexible chain model of Kremer and Grest [1]. In

this model, the polymer is stripped to the essential physics.

Polymers are modeled as chains of connected sites with

excluded volume interactions and small fluctuations about a

well-defined bond length. To study penetrants, one only

needs add unconnected sites. This work extends [2] and

corrects [3] previous research on this polymer-penetrant

system and focuses on correlations between the penetrant

and the polymer properties.

To obtain the structure, one can use simulation,

experiment, or theory. A theory that has been successful

in describing polymer structure is the Polymer Reference

Interaction Site Model (PRISM) theory [4]. PRISM theory

relates the intramolecular and intermolecular structure

through a single integral equation, which can be solved

either self-consistently or using prior knowledge of the

intramolecular structure. The benefit of using theory over

simulation is the speed at which results can be obtained,

especially as the model of interest becomes more

complicated.

Historically, there have been several ways to correlate

diffusion coefficients with the surrounding medium. Prob-

ably, the most widely used as a first approximation is the

Stokes–Einstein relation. The Stokes–Einstein relation is

often invoked even for situations in which few of the

underlying assumptions are valid and works surprisingly

well. In cases for which the Stokes–Einstein relation fails, it

is common to make empirical corrections based on a data
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set. These corrections are generally applicable to only a

small class of substances.

In the polymer community, free volume is the concept

often invoked to correlate diffusion coefficients with

polymer properties. Recent experimental work has involved

positron annihilation lifetime spectroscopy to determine

free volume [5,6]. Recent studies of small molecule

diffusion in polymers (using both simulated and exper-

imental data) have looked at the connection between free

volume and diffusivity with varying degrees of success

[7–9].

In this work, it is seen that the effect of penetrant size on

the diffusion coefficient is modified depending on chain

flexibility. From the free volume distribution and mean void

size, it is shown that this result is not due to a change in free

volume; the free volume distribution is essentially constant

as chain stiffness varies. Rather, it appears that chain

mobility itself is the source of this effect. As the chain

stiffness increases, the number of sites on the polymer that

must have coordinated motions increases. This changes the

local dynamics and the relative effects of system relaxation,

binary collisions, and free volume that a penetrant

experiences.

2. Simulation and theory details

2.1. Theory of diffusion

The study of diffusion in liquids is a multifaceted field

with a long history. Many theories and correlations have

been proposed for diffusion in liquids and specifically in

alkanes. Some of these correlations have a theoretical basis

with empirically fit parameters [10] and others are purely

empirical fits [11,12] assuming that the diffusion coefficient

should be a function of system variables such as size,

temperature, or density. Since, the focus in the current work

is the effects of penetrant size and chain flexibility on the

penetrant diffusion coefficient, only a few predictive

equations are of interest here. This section gives some

brief descriptions of the equations to which the results of

this paper will be compared.

It is instructive to make use of the Stokes–Einstein

analysis at the continuum level. The Einstein relation

D ¼
kBT

z
ð1Þ

shows that the diffusion coefficient of the solute ðDÞ is

inversely proportional to the solute friction coefficient ðzÞ

and proportional to temperature ðTÞ: If the friction

coefficient can be described using Stokes law, the result is

the Stokes–Einstein relation

D ¼
kBT

6pRsh
ð2Þ

where Rs is the hydrodynamic radius of the solute and h is

the viscosity of the solvent. This relation is used with fair

results even for instances where the conditions for Stokes

law are inapplicable.

A commonly used correlation based on the Stokes–

Einstein relation is due to Wilke and Chang [13]. It allows

for a different penetrant size dependence determined from

experimental data:

D ¼ a
TM1=2

c

hcd1:8
s

ð3Þ

where a is a constant dependent on system type, d is a

molecular diameter extracted from the molal volume at the

normal boiling point (assuming spherical molecules), and M

is the molecular weight. For consistency throughout this

paper, subscript s refers to a solute property and subscript c

refers to a solvent property. A modification to the Wilke–

Chang relation suggested for use with a wider range of

solvents [14] is due to Scheibl. It has behavior that changes

based upon relative penetrant size. For small solutes, it is

simply the Stokes–Einstein equation with an additional

multiplicative constant. For large solutes ðds $ 1:4dcÞ; the

equations reduce to

Dhc

T
¼ constant

1

ds

þ
32=3d2

c

d3
s

 !
ð4Þ

Instead of modifying Stokes law empirically, mode-

coupling theory allows a more molecular basis for the

calculation of the friction coefficient z [15]. The basic

premise is that there are two parts to the friction coefficient:

one due to the binary collisions between the solvent and the

solute and one due to the multiple correlated collisions due

to high density and/or attractions. The idea specific to mode-

coupling theory is the method by which the correlated

collisions are related to the solvent properties. Since the

equations to be solved using mode-coupling theory are not

explicitly a function of penetrant size, there is no need to

consider them further here.

However, it is not necessary to use the continuum level

Einstein equation as a starting point. Enskog theory [16] can

be used to calculate the diffusion coefficient using a

molecular basis. This theory is based on binary collisions

determining the diffusion coefficient. For a dense mixture of

hard spheres, the diffusion coefficient can be calculated

from [17]

D ¼
3

8nd2
scgscðdscÞ

ðms þ mcÞkBT

2pmsmc

� �1=2

ð5Þ

where n is the total number density, dsc is the arithmetic

average of the hard sphere diameters, mx is the mass of

component x (x ¼ c or s), and gscðdscÞ is the unlike pair

correlation function. Using a modification of the Percus–

Yevick equation of state for hard spheres, one can calculate

J. Budzien et al. / Polymer 45 (2004) 3923–39323924



gsc from [17,18]

gscðdscÞ ¼
dsgccðdscÞ þ dcgssðdscÞ

2dsc

ð6Þ

where

gii ¼
1

1 2 x
þ

3yi

2ð1 2 xÞ2
þ

y2
i

2ð1 2 xÞ3
ð7Þ

xi ¼
pnid

3
i

6
ð8Þ

x ¼ xi þ xj ð9Þ

yi ¼
djxi þ dixj

dj

ð10Þ

with i and j taking the values of s or c as appropriate.

Modifications exist so that Eq. (5) can be used for systems

other than hard spheres and at high density. A standard

modification is the assumption of rough hard spheres [19].

This modification entails multiplying the Enskog diffusion

coefficient by a system dependent constant. This constant

corrects for the correlated collisions due to higher density

and the conversion of translational motion into rotational

motion in polyatomic systems. The dependence of this

constant on system variables such as size of the molecules,

deviation from spherical molecules, temperature, density,

and type of molecular interactions has been the subject of

multiple papers [17,20–24] with no clear consensus

reached.

In these small-molecule theories, the size of the solvent is

based on a spherical model with an effective radius of

gyration. However, for long chain molecule solvents with a

small species as the solute (e.g. methane in tetracosane), the

radius of gyration may be an inappropriate measure of

relative sizes.

Free-volume theory [25] is a traditional means to

calculate the diffusion coefficient of penetrants in polymers

D ¼ A exp 2
BV̂

V0

" #
ð11Þ

where A and B are constants for a particular system, V0 is a

free volume, and V̂ is a characteristic volume of the solute.

There has been a substantial amount of effort as evidenced

by the literature to make Eq. (11) amenable to calculations

based upon readily available solute and polymer properties.

Thus far, there has been no overwhelmingly successful

method to do this.

For organic systems, Bosma and Wesslingh [26]

combined the Stokes–Einstein equation with the free

volume equation to get

D ¼
kBT

3phcds

1 þ b

ffiffiffiffiffiffiffi
dcrc

dsrs

s
exp 2

g

vfree;c

ds

dc

2 1

� � !" #
ð12Þ

where vfree;c is the free volume of the solvent divided by its

closest packed volume, r is density, and g is a constant

of 0.8.

2.2. Simulation details

The systems studied here have five penetrants and 16

chains each of length 50 sites or five penetrants in a solvent

of 800 sites for atomic systems. Molecular dynamics

simulations were performed [27] in the NVT ensemble

using a velocity Verlet algorithm. The temperatures were set

equal to one in reduced Lennard–Jones units using a Nosé–

Hoover [28] thermostat with a frequency constant of 0.1

inverse time units (1.0 for atomic systems). The reduced

number density of sites was constant at 0.84 in a volume of

958:33s3: There was a variation in packing fraction of about

2% from 0.46 to 0.47. The time step size was 0.006. Systems

were equilibrated for at least 106 time steps with production

runs of 7 £ 106 time steps.

Simulations were performed using the standard purely

repulsive, semi-flexible chain model [1]. The potential for

the bonded atoms is

UbondðrÞ ¼ 20:5HR2
0 ln 1 2

r

R0

� �2
" #

r , R0

UbondðrÞ ¼ 1 otherwise

ð13Þ

Following previous work [1,2], H ¼ 30; R0 ¼ 1:5: The

stiffness of the chain was varied using a harmonic potential

[2]

UstiffðuÞ ¼ Kðu2 u0Þ
2 ð14Þ

with K ¼ 0; 1, 5, 10, 20, 100, and 500 in Lennard–Jones

energy units and u0 ¼ 2p=3:

In addition, there is a purely repulsive Lennard–Jones

interaction between all sites in the model [2]:

where a and b denote the identity of the sites involved

(type c or s). Both s and 1 were assigned values of

unity in these simulations. The Dab indicates a shift due

to different size penetrants. The polymer sites always

interact with Dcc ¼ 0: Cross-interactions are calculated

using the arithmetic mean. Simulations were performed

with different size penetrants in the polymer. The mass

of every site was set equal to one even for the varying

size penetrants. Penetrant sizes reported here have been

UabðrÞ ¼ 41
s

r 2 Dab

 !212

2
s

r 2 Dab

 !26

þ
1

4

" #
r # 21=6sþ Dab

UabðrÞ ¼ 0 otherwise

ð15Þ
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normalized so that polymer sites have a diameter dc ¼

1:0:

For this system with K ¼ 0; the entanglement length has

been reported as between 32 and 110 sites [1] so the current

chain length of 50 sites is within this range. However, the

entanglement effects are not expected to be important for the

penetrant diffusion analysis performed in this work. To

calculate the diffusion coefficient of the penetrant from

simulation, one can use the penetrant motion and the

Einstein relation

kl~RðtÞ2 ~Rð0Þl2l ¼ 6Dt ð16Þ

where R is the position of a penetrant, t is time, and D is the

diffusion coefficient. The angle brackets denote an average

over equivalent sites and all starting positions. This equation

is valid only at long times. In this work, diffusion

coefficients were extracted from simulation through the

equation

D ¼
1

6

dkR2l
dt

ð17Þ

It is equivalent to the Einstein relation at long times. The

time region to be fit was determined from a plot of logkR2l
versus log time for times at which the slope is unity.

2.3. PRISM theory

The average intramolecular structure for a and g type

sites on a single chain can be written as

V̂agðkÞ ¼
1

Na

X
i[a

X
j[g

sin krij

krij

* +
ð18Þ

where k is the wave vector, rij is the distance between sites i

and j; and Na is the number of sites of type a. The sums are

over all sites of a given type. This intermolecular structure is

characterized by the pair correlation functions gag or

equivalently by

hagðrÞ ¼ gagðrÞ2 1: ð19Þ

The generalized Ornstein–Zernike equation [29] relates the

two structure types through the direct correlation function

CagðrÞ: In matrix notation in Fourier space, this becomes

ĥðkÞ ¼ V̂ðkÞĈðkÞ½V̂ðkÞ þ rĥðkÞ� ð20Þ

where r is the number density. To solve this equation, one

needs a closure relation for the direct correlation function. It

has been found for liquid-like densities that the Percus–

Yevick relation is appropriate [4,29]. For a hard core

potential, the Percus–Yevick closure can be written as

gagðrÞ ¼ 0 for r , dag

CagðrÞ ¼ 0 for r . dag

ð21Þ

It has been demonstrated [4] that PRISM theory is most

compatible with repulsive potentials. Using the repulsive

potential defined for the simulation (UabðrÞ from Eq. (15)),

this dag can be calculated from the Barker–Henderson

equation

d ¼
ð1

0
1 2 exp 2

UðrÞ

kBT


 �� �
dr ð22Þ

It has also been demonstrated [30] that PRISM theory

predicts a greater compressibility for polymer melts than is

seen experimentally. This can be corrected through a

modified Percus–Yevick closure for the polymer sites

gppðrÞ ¼ 0 for r , dpp

CppðrÞ ¼ CHCðdppÞ
dpp

r


 �a

for r . dpp

ð23Þ

where CHCðdppÞ is the hard core CðrÞ at contact and a is a

constant chosen to match the PRISM isothermal compres-

sibility to experimental values. A value of a ¼ 15 works

reasonably well for the models considered here.

2.4. Free volume

To calculate the free volume from PRISM theory, one

calculates the reversible work of growing a spherical cavity,

which is related to the insertion probability and then to the

free volume distribution. The work of inserting a spherical

void of radius R (denoted wðRÞ) can be written as

wðRÞ

kBT
¼ pRr

X
a

ð1

0
dl da þ 2lR
� �2

gðlÞ
ad

da þ l2R

2

� �
ð24Þ

where gðlÞ
ad is the value at contact and l is a charging

parameter that varies the size of the void from a point ðl ¼

0Þ to a full size void of radius Rðl ¼ 1Þ: To calculate the pair

correlation function for a polymer-void at contact, one uses

the PRISM Eq. (20) with the single chain structure taken

from the simulation and either closure Eq. (21) or (23). For a

spherical cavity, the intramolecular structure factor is unity

for all k and the cross-term is zero.

This reversible work is related to the insertion probability

as

PðRÞ ¼ f0 exp 2
wðRÞ

kBT


 �
ð25Þ

where f0 is the free volume fraction or, equivalently, one

minus the packing fraction. The insertion probability also

can be written [31] as

PðRÞ ¼
ð1

R
f ðrÞdðrÞ ð26Þ

where f ðrÞ is the free volume distribution. By taking the

derivative of Eq. (26), one can calculate f ðrÞ numerically. It

is useful to define an average void size, kRl; and distribution

width by kR2l2 kRl2; where the average is defined in the
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customary way through the distribution function

kRnl ¼
ð1

0
Rnf ðRÞdR ð27Þ

The reversible work of insertion can also be calculated from

scaled particle theory [32,33]. For point particles ðr # dp=2Þ;

the work of insertion can be written as [32]

WðrÞ ¼ 2kBT ln 1 2
4

3
pr3r

� �
ð28Þ

where WðRÞ differs from wðRÞ due to the method of

incorporating the base free volume afforded by the packing

fraction. For very large voids, the work can be written as

[32]

WðrÞ ¼
4

3
pr3Pþ 4pr2S0 ð29Þ

where P is the pressure and S0 is an interfacial tension

between a hollow, rigid sphere and the polymer sites. To

interpolate between the two limits, an expansion in radius is

used [32]

WðrÞ ¼ a0 þ a1r þ a2r2 þ a3r3 ð30Þ

The expansion coefficients are determined through using the

large (Eq. (29)) and small (Eq. (28) for r ¼ dp=2) limits.

They are [32]

a0 ¼ kBT ln
1

1 2 y

� �
þ

9

2
X2

� �
2

pd3
c

6
P;

a1 ¼ 2
kBT

dc

{6X þ 18X2} þ pd2
cP;

a2 ¼
kBT

d2
c

{12X þ 18X2} 2 2pdcP; a3 ¼
4

3
pP

ð31Þ

where y ¼ pd3
cr=6 is the packing fraction and X ¼ y=1 2 y:

Eqs. (30) and (31) can be used in conjunction with Eq. (25)

(the f0 term is already included in the a0 term for scaled

particle theory) to calculate the insertion probability.

In addition, the insertion probabilities and free volume

distributions can be calculated directly from simulation.

Polymer configurations are saved periodically. A fine grid is

superposed on the configuration. At each grid point, a sphere

is inserted and grown until it overlaps a polymer site.

Statistics are kept about the maximum inserted test sphere

sizes achieved.

3. Results

3.1. Diffusion coefficients

The diffusion coefficients for a range of penetrant sizes

from 0.8 to 1.5 (in polymer site units) in atomic solvents and

chains of varying stiffnesses are plotted in Fig. 1. The data

for these systems are in Table 1 and the slopes extracted

from Fig. 1 are given in Table 2. It can be seen that, as one

would expect, the diffusion coefficient decreases with

increasing penetrant size in the same solvent. As chain

stiffness increases, penetrant diffusion decreases and the

dependence of the diffusion coefficient on penetrant size

becomes a more negative power.

To gauge the reasonableness of the size dependence, we

can compare with theory and correlation. The atomic system

slope of 21.7 is consistent with Wilke–Chang correlation

[13] (Eq. (3) predicts a value of 21.8) and is not very

different from the 21.5 expected from Enskog theory using

Eq. (5) (see Fig. 2). The penetrants simply are not large

enough for the Stokes–Einstein relation (slope ¼ 21) to

apply (some literature estimates [15,26] are that size ratios

of 2–3 are necessary). None of the chain systems are

particularly close to the alkane predictions, although the

Fig. 1. Diffusion coefficient as a function of penetrant size and chain

stiffness. Atomic systems (pluses), K ¼ 0 (triangles), K ¼ 10 (circles), K ¼

100 (squares), K ¼ 500 (x’s). Lines are best fits.

Table 1

Diffusion coefficients ðs2=t0Þ for purely repulsive penetrants in FENE

repulsive LJ chains. Sizes have been normalized so that a polymer site

diameter is 1.0

Penetrant size Atomic system K ¼ 0 K ¼ 10 K ¼ 100 K ¼ 500

0.8 0.092 0.075 0.057 0.035 0.032

1.0 0.067 0.046 0.030 0.014 0.012

1.2 0.047 0.032 0.017 0.008 0.007

1.5 0.032 0.016 0.007 0.003 0.002

Table 2

The power dependence of diffusion coefficient on penetrant size as a

function of chain stiffness

Chain stiffness K Slope from log–log plot

Atomic 21.7

0 22.4

10 23.3

100 23.8

500 24.3
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Steibl correlation (Eq. (4)) with a slope of 23 is closest for

the K ¼ 10 case of 23.3.

Some of this lack of agreement may be due to the

assumptions behind the theories and correlations that are

inapplicable in this case. One unmet assumption is that

though the current systems contain chain and solvent

molecules, they are not truly alkane-solute systems due to

the lack of attractions. The simulation model has been

shown to adequately describe the melt behavior of polymer

chains [1]; nonetheless, the interaction between solvent and

solute may not be properly captured. This may make

some difference although it is expected for dense systems

that the repulsive interactions are dominant in determining

diffusion [19].

Another difficulty is that the theories are based on non-

penetrating spheres as both solvent and solute. While the

individual sites of a chain may act as spheres, the entire

chain is not a sphere and chains freely interpenetrate. The

empirically determined correlations and modifications to

the theories do not explicitly include this connected, non-

sphericality. Thus, while the correlations may well describe

the experimental alkane systems, the reported size dependence

may not be the ‘correct’ size dependence because it is

compensating for other factors such as attractions, non-

spherical penetrants, and a change in mass with penetrant size.

Since the correlations and theories have some difficulties

associated with them, we have reanalyzed some experimen-

tal data specifically for the size dependence. A recently

reported set of experiments [34,35] used a series of rather

large aromatic hydrocarbon penetrants (biphenyl, anthra-

cene, diphenylacetylene, diphenylbutadiyne, pyrene, per-

ylene, coronene, rubrene) and oxygen in the homologous

series hexane through hexadecane to determine deviations

from the Stokes–Einstein relation. Using these results

including the values for the penetrant size (based on an

equivalent sphere diameter), a plot similar to Fig. 1 was

made for each alkane. Fig. 3 shows a few examples. To

normalize the penetrant size with respect to the solvent, the

value of dsolvent ¼ 4:013 Å was used. This value was

calculated from the van der Waals volume [36] for

polyethylene repeat units (C2H4).

It can be seen that as chain length increases, slope

becomes more negative. The figure also shows that by

choosing what range of penetrant sizes are of interest, the

slope of the log D– log d plot changes. However, in all

cases, the slope becomes more negative as solvent chain

length increases. Since our focus is on polymers, the long

chain limit of the slope is of interest. The slope versus

reciprocal chain length was plotted and the linear region was

fit for a few penetrant size ranges. Table 3 has some

representative data for these ranges. The infinite chain

length values range from 23.2 to 26.7. This accords well

with the K ¼ 10; 100 and 500 values of 23.3 to 24.3. The

K ¼ 0 case with a slope of 22.4 falls as expected between

the atomic case and a chain with additional restrictions. It is

still less than the cubic dependence from naı̈ve free volume

considerations and greater than the 22 from a simple binary

collision argument.

3.2. Free volume

The void insertion probability for a range of void

sizes was calculated from PRISM theory and configur-

ations saved from MD simulation for a chain stiffness

K ¼ 0: The results are shown in Fig. 4. It can be seen

that the two methods give similar results for small free

volume sizes. The inset emphasizes the larger size

voids. It can be seen here that, due to the over-

estimation of polymer compressibility, PRISM predicts

a larger insertion probability than is seen in simulation.

Fig. 2. Comparison of simulated results and Enskog theory. Eq. (5) (line),

atomic systems (pluses), K ¼ 0 (triangles).
Fig. 3. Diffusion coefficient of molecules in alkanes using data from Refs.

[34,35]. Hexane (squares), nonane (triangles), tridecane (circles), hexade-

cane (x’s), slope for K ¼ 0 (dot dashed line), slope for K ¼ 500 (solid line).

The K ¼ 0 and K ¼ 500 lines have arbitrary offsets along the log D axis.
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Applying the correction for compressibility to PRISM

does improve agreement with simulation results as can

be seen in the inset of Fig. 4.

The results for the probability of insertion calculated

from simulation, scaled particle theory, and PRISM theory

are compared in Fig. 5. Simulation and scaled particle

theory are in good agreement, while PRISM theory has a

slightly greater probability of finding a large void. The

discrepancy between the simulation and scaled particle

theory at large void sizes may be in part due to the size of the

error in the pressure extracted from simulation.

The calculated free volume distribution for the chain

stiffness K ¼ 0 is plotted in Fig. 6. The shape of the curve at

very small void radii is sensitive to the numerical

uncertainties in taking the derivative of the insertion

probability and the maximum shown may be a result of

numerical error. The agreement between theory and

simulation is reasonable, and, as was seen with insertion

probability, correcting PRISM theory for compressibility

leads to better agreement for large void radii as is seen in the

inset to the figure.

Calculations were performed for chains with stiffness

parameters K ¼ 0 to 20. There are significant differences in

the intermolecular and intramolecular structures with

variation in K as can be seen in Figs. 7 and 8. However,

very little difference is seen in the insertion probability or

free volume distribution. Averages from both simulation

and theory are listed in Table 4. These results show that

there is little dependence of free volume distribution or

average void size on chain stiffness. This result is consistent

with previous simulation results [37,38]. In those simu-

lations, it was found that, at constant free volume fraction,

changing the chain flexibility through the torsion potential,

the equilibrium bond angle, or different main chain groups

affected the penetrant diffusion coefficient. Chains with

greater flexibility are associated with a larger diffusion

coefficient.

Table 3

The size dependence of diffusion coefficients in alkanes from the slope in a log D– logðd=dPEÞ plot

Alkane All solutes Small solutesa All solutes except rubrene All solutes except oxygen All solutes except oxygen and rubrene

Hexane 21.82 21.68 21.70 22.04 22.24

Heptane 21.92 21.80 21.88 22.18 22.47

Octane 22.05 21.90 21.99 22.37 22.76

Nonane 22.09 21.94 22.03 22.44 22.86

Decane 22.17 22.00 22.10 22.56 23.05

Undecane 22.24 22.05 22.17 22.66 23.21

Dodecane 22.37 22.11 22.29 22.86 23.51

Tridecane 22.42 22.14 22.34 22.93 23.62

Tetradecane 22.57 22.25 22.47 23.14 23.95

Pentadecane 22.64 22.30 22.54 23.25 24.12

Hexadecane 22.73 22.37 22.62 23.38 24.32

Long chain extrapolation 23.8 23.2 23.6 24.7 26.7

a 0.83 , ðd=dPEÞ , 1:7:

Fig. 4. Insertion probability for a semi-flexible chain liquid with chain

stiffness K ¼ 0: Solid curve is PRISM theory; dotted curve is MD

simulation. Inset is log PðRÞ versus R: The dot-dashed line is the PRISM

with compressibility correction.

Fig. 5. Probability of finding a void of radius R or larger in tangent-sphere

chains. MD is simulation result; SPT is scaled particle theory result; PRISM

is polymer reference interaction site model theory result.
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4. Discussion

While free volume is necessary for diffusion to occur,

knowing the static free volume distribution is not sufficient

to predict diffusion. It has been well established that the

polymer mobility has a significant effect on the penetrant

diffusion coefficient. It has been found in simulations

[39–42] that penetrants in rigid polymer matrices will not

diffuse unless the free volume is connected. In addition, it

has been shown [43] that while a ‘jumping’ motion may be

employed by the penetrant, the free volume concentration

near the penetrant need not change during this jump.

Instead, it is sufficient for the polymer to move and allow

two voids to become connected.

There are instances in the literature where it has been

mentioned in passing that it is not necessarily the amount of

free volume present, but also the shape of the voids [44] and

their change in shape with time [6,7,43] that determine

penetrant diffusion coefficient. Our results are consistent

with these ideas. While, we have considered explicitly only

free volume of spherical shape, the free volume probabil-

ities were calculated for very small voids. Although, we do

not know how these small voids are connected, the fact that

the size dependence of the penetrant diffusion coefficient

changes with chain flexibility seems to indicate that the time

behavior of the connectivity is altered even if the shape or

distribution of free volume is not. This result is also

consistent with previous simulation results [45] in which it

was found that diffusion coefficient was influenced in a

complicated manner by polymer mobility.

The current trend in obtaining theoretical predictions for

diffusion is to combine multiple theories and examine the

relative contributions to the diffusion coefficient. Following

Bosma and Wesslingh [26], the relative contributions to the

diffusion coefficient change as the penetrant size changes.

The two dominant terms from Eq. (12) (assuming equal

densities, g ¼ 0:8; and vfree;c ¼ 0:3) are plotted in Fig. 9. It

can be seen that the free volume term dominates at small

Fig. 6. Free volume distribution for a semi-flexible chain liquid with chain

stiffness K ¼ 0: Solid curve is PRISM theory, dotted curve is MD

simulation, and dot-dashed curve is from PRISM theory with compressi-

bility correction. The inset is a plot of log f ðRÞ versus R2:

Fig. 7. Kratky plot of the single chain structure factor of semi-flexible

chains obtained from MD simulations with various chain stiffnesses. K ¼ 0

(triangles), 1 (pluses), 5 (squares), 10 (circles), 20 (x’s).

Fig. 8. Intermolecular pair correlation function for semi-flexible chains.

Dot-dashed line is K ¼ 20; dotted line is K ¼ 1; solid line is K ¼ 0:

Table 4

Average free volume in units of d (for a packing fraction of 0.45 and a site

density of 0.85)

Polymer PRISM MD P from MD

K ¼ 0kRl 0.123 0.119 4.7 ^ 0.3

K ¼ 0kR2l2 kRl2 0.00768 0.00714

K ¼ 1kRl 0.125 0.119 4.8 ^ 0.3

K ¼ 1kR2l2 kRl2 0.00827 0.00706

K ¼ 5kRl 0.1258 0.119 4.9 ^ 0.3

K ¼ 5kR2l2 kRl2 0.00818 0.00704

K ¼ 20kRl 0.1263 0.120 4.7 ^ 0.5

K ¼ 20kR2l2 kRl2 0.00823 0.00717
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penetrant size and that the Stokes–Einstein term dominates

at large penetrant size. In between is a region in which both

terms have nearly equal magnitude. This would seem to

indicate that both ideas should be incorporated.

A similar effect was seen using a mode-coupling

approach [15]. For large solutes, hydrodynamics (the

Stokes–Einstein relation) was important. As solute size

decreased, the binary collisions and density relaxations

determined the diffusion coefficient. At small penetrant size,

only the binary collisions were necessary. For equally sized

solute and solvent, the binary collisions were already

contributing more than half of the friction coefficient. For a

combination simulation and experimental study of a large

(relative to site size) penetrant in different length alkanes

[46], it was found that friction coefficient varied with chain

length. The postulated explanation was a crossover regime

as chain length increased so that there was a segmental

friction coefficient rather than the whole chain contributing.

These ideas can be applied to our results as well. For the

atomic case, each site is able to move based on the collisions it

experiences and the space available. This space available may

not be free volume in the standard sense of the term. Although

all masses are equal, from geometric packing considerations,

larger sites may be able to push smaller sites out of the way.

Upon linking sites into chains with no angle constraints,

the chain sites not only lose mobility due to the connectivity,

but also the direction in which an individual chain site can

move is restricted because part of its surroundings will

always be blocked by its bonded neighbors. Since the vast

majority of the sites are chain sites with these new

restrictions, the entire system dynamics slow. From a strict

kinetic theory view, assuming that the system corrections

cancel and that the proper mass of the polymer is that of the

whole chain, the ratio of the interdiffusion coefficients for

the solute in a chain system and an atomic system should be

1=
ffiffi
2

p
: This works well for the K ¼ 0 systems for penetrants

about the same size as a polymer site and is an overestimate

as K increases.

As the angle constraint is applied, the connectivity

restriction on motion becomes greater as the second bonded

neighbors must also move so that a chain site can move. The

motion of any site is now more dependent on a chain

segmental motion or system relaxation and the relative

effect of the collisions is likely to be lessened. Since the

dependence on penetrant size is different for these means of

transport, the size dependence of the diffusion coefficient is

likely to change. This is consistent with the results in Table

3 where the size dependence of the diffusion coefficient

varied as a function of relative penetrant size considered.

5. Conclusions

Molecular dynamics simulations of a semi-flexible chain

polymer with penetrants were performed to determine the

diffusion coefficient as a function of penetrant size and

polymer flexibility. It was found that the size dependence of

the penetrant diffusion coefficient varies regularly with

chain flexibility from the near liquid-like behavior of

penetrant diameter raised to the 22.4 power to a more

chain-like behavior with an exponent of 24.3. None of the

systems exhibited the Stokes–Einstein limit of penetrant

diameter to the 21 power.

PRISM theory and simulation were both used to

determine free volume distribution and free volume size.

There was good agreement between the two methods in the

average void size and size distribution width. While the

polymer structure varied as chain flexibility varied, there

was not a similar variance in the free volume distribution or

in the average void size. The free volume was constant

across all chain stiffnesses.

It was hypothesized that the change in penetrant size

dependence of the diffusion coefficient may be a result of the

change in dynamics of the system due to increasing stiffness.

As stiffness increases, the group nature of the chain sites’

motions becomes more apparent. These concerted motions

may affect the local dynamics so that there is a change in

relative contributions to the penetrant diffusion coefficient

from collision-driven dynamics, system relaxation, and free

volume. Since these mechanisms have different penetrant size

dependencies, the overall diffusion coefficient size depen-

dence will change as the relative contributions change.
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